Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Exp Biol Med (Maywood) ; 248(22): 2045-2052, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37955170

RESUMO

The capsid has a central role in viruses' life cycle. Although one of its major functions is to protect the viral genome, the capsid may be composed of elements that, at some point, promote interaction with host cells and trigger infection. Considering the scenario of multiple origins of viruses along the viral evolution, a substantial number of capsid shapes, sizes, and symmetries have been described. In this context, capsids of giant viruses (GV) that infect protists have drawn the attention of the scientific community, especially in the last 20 years, specifically for having bacterial-like dimensions with hundreds of different proteins and exclusive features. For instance, the surface fibrils present on the mimivirus capsid are one of the most intriguing features of the known virosphere. They are 150-nm-long structures attached to a 450-nm capsid, resulting in a particle with a hairy appearance. Surface fibrils have also been described in the capsids of other nucleocytoviruses, although they may differ substantially among them. In this mini review for non-experts, we compile the most important available information on surface fibrils of nucleocytoviruses, discussing their putative functions, composition, length, organization, and origins.


Assuntos
Vírus Gigantes , Mimiviridae , Vírus , Proteínas do Capsídeo/análise , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Vírus Gigantes/genética , Mimiviridae/genética
2.
Arch Virol ; 168(11): 283, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904060

RESUMO

Large DNA viruses in the phylum Nucleocytoviricota, sometimes referred to as "giant viruses" owing to their large genomes and virions, have been the subject of burgeoning interest over the last decade. Here, we describe recently adopted taxonomic updates for giant viruses within the order Imitervirales. The families Allomimiviridae, Mesomimiviridae, and Schizomimiviridae have been created to accommodate the increasing diversity of mimivirus relatives that have sometimes been referred to in the literature as "extended Mimiviridae". In addition, the subfamilies Aliimimivirinae, Megamimivirinae, and Klosneuvirinae have been established to refer to subgroups of the Mimiviridae. Binomial names have also been adopted for all recognized species in the order. For example, Acanthamoeba polyphaga mimivirus is now classified in the species Mimivirus bradfordmassiliense.


Assuntos
Vírus Gigantes , Mimiviridae , Humanos , Vírus Gigantes/genética , Vírus de DNA/genética , Mimiviridae/genética , Genoma Viral , Vírion
3.
Viruses ; 15(8)2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37632100

RESUMO

Our perception of viruses has been drastically evolving since the inception of the field of virology over a century ago. In particular, the discovery of giant viruses from the Nucleocytoviricota phylum marked a pivotal moment. Their previously concealed diversity and abundance unearthed an unprecedented complexity in the virus world, a complexity that called for new definitions and concepts. These giant viruses underscore the intricate interactions that unfold over time between viruses and their hosts, and are themselves suspected to have played a significant role as a driving force in the evolution of eukaryotes since the dawn of this cellular domain. Whether they possess exceptional relationships with their hosts or whether they unveil the actual depths of evolutionary connections between viruses and cells otherwise hidden in smaller viruses, the attraction giant viruses exert on the scientific community and beyond continues to grow. Yet, they still hold surprises. Indeed, the recent identification of mirusviruses connects giant viruses to herpesviruses, each belonging to distinct viral realms. This discovery substantially broadens the evolutionary landscape of Nucleocytoviricota. Undoubtedly, the years to come will reveal their share of surprises.


Assuntos
Vírus Gigantes , Mimiviridae , Mimiviridae/genética , Eucariotos , Vírus Gigantes/genética
4.
J Mol Biol ; 435(17): 168188, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37380013

RESUMO

Viruses are believed to be the obligate intracellular parasites that only carry genes essential for infecting and hijacking the host cell machinery. However, a recently discovered group of viruses belonging to the phylum nucleocytovirocota, also known as the nucleo-cytoplasmic large DNA viruses (NCLDVs), possess a number of genes that code for proteins predicted to be involved in metabolism, and DNA replication, and repair. In the present study, first, using proteomics of viral particles, we show that several proteins required for the completion of the DNA base excision repair (BER) pathway are packaged within the virions of Mimivirus as well as related viruses while they are absent from the virions of Marseillevirus and Kurlavirus that are NCLDVs with smaller genomes. We have thoroughly characterized three putative base excision repair enzymes from Mimivirus, a prototype NCLDV and successfully reconstituted the BER pathway using the purified recombinant proteins. The mimiviral uracil-DNA glycosylase (mvUDG) excises uracil from both ssDNA and dsDNA, a novel finding contrary to earlier studies. The putative AP-endonuclease (mvAPE) specifically cleaves at the abasic site created by the glycosylase while also exhibiting the 3'-5' exonuclease activity. The Mimivirus polymerase X protein (mvPolX) can bind to gapped DNA substrates and perform single nucleotide gap-filling followed by downstream strand displacement. Furthermore, we show that when reconstituted in vitro, mvUDG, mvAPE, and mvPolX function cohesively to repair a uracil-containing DNA predominantly by long patch BER and together, may participate in the BER pathway during the early phase of Mimivirus life-cycle.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Mimiviridae , DNA , Replicação do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Uracila/metabolismo , Mimiviridae/genética
5.
Viruses ; 15(4)2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37112995

RESUMO

Acanthamoeba polyphaga mimivirus, so called because of its "mimicking microbe", was discovered in 2003 and was the founding member of the first family of giant viruses isolated from amoeba. These giant viruses, present in various environments, have opened up a previously unexplored field of virology. Since 2003, many other giant viruses have been isolated, founding new families and taxonomical groups. These include a new giant virus which was isolated in 2015, the result of the first co-culture on Vermamoeba vermiformis. This new giant virus was named "Faustovirus". Its closest known relative at that time was African Swine Fever Virus. Pacmanvirus and Kaumoebavirus were subsequently discovered, exhibiting phylogenetic clustering with the two previous viruses and forming a new group with a putative common ancestor. In this study, we aimed to summarise the main features of the members of this group of giant viruses, including Abalone Asfarvirus, African Swine Fever Virus, Faustovirus, Pacmanvirus, and Kaumoebavirus.


Assuntos
Vírus da Febre Suína Africana , Vírus Gigantes , Mimiviridae , Vírus , Suínos , Animais , Filogenia , Vírus da Febre Suína Africana/genética , Vírus/genética , Mimiviridae/genética , Vírus de DNA/genética , Genoma Viral
6.
J Virol ; 97(2): e0182422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36728417

RESUMO

Among the most intriguing structural features in the known virosphere are mimivirus surface fibrils, proteinaceous filaments approximately 150 nm long, covering the mimivirus capsid surface. Fibrils are important to promote particle adhesion to host cells, triggering phagocytosis and cell infection. However, although mimiviruses are one of the most abundant viral entities in a plethora of biomes worldwide, there has been no comparative analysis on fibril organization and abundance among distinct mimivirus isolates. Here, we describe the isolation and characterization of Megavirus caiporensis, a novel lineage C mimivirus with surface fibrils organized as "clumps." This intriguing feature led us to expand our analyses to other mimivirus isolates. By employing a combined approach including electron microscopy, image processing, genomic sequencing, and viral prospection, we obtained evidence of at least three main patterns of surface fibrils that can be found in mimiviruses: (i) isolates containing particles with abundant fibrils, distributed homogeneously on the capsid surface; (ii) isolates with particles almost fibrilless; and (iii) isolates with particles containing fibrils in abundance, but organized as clumps, as observed in Megavirus caiporensis. A total of 15 mimivirus isolates were analyzed by microscopy, and their DNA polymerase subunit B genes were sequenced for phylogenetic analysis. We observed a unique match between evolutionarily-related viruses and their fibril profiles. Biological assays suggested that patterns of fibrils can influence viral entry in host cells. Our data contribute to the knowledge of mimivirus fibril organization and abundance, as well as raising questions on the evolution of those intriguing structures. IMPORTANCE Mimivirus fibrils are intriguing structures that have drawn attention since their discovery. Although still under investigation, the function of fibrils may be related to host cell adhesion. In this work, we isolated and characterized a new mimivirus, called Megavirus caiporensis, and we showed that mimivirus isolates can exhibit at least three different patterns related to fibril organization and abundance. In our study, evolutionarily-related viruses presented similar fibril profiles, and such fibrils may affect how those viruses trigger phagocytosis in amoebas. These data shed light on aspects of mimivirus particle morphology, virus-host interactions, and their evolution.


Assuntos
Mimiviridae , Proteínas do Capsídeo/genética , Genoma Viral , Microscopia Eletrônica , Mimiviridae/genética , Mimiviridae/ultraestrutura , Filogenia
7.
Microbiol Spectr ; 10(6): e0275322, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453900

RESUMO

Mimivirus and Marseillevirus infections of Acanthamoeba castellanii, like most other viral infections, induce cytopathic effects (CPE). The details of how they bring about CPE and to what extent and how they modify the host cytoskeletal network are unclear. In this study, we compared the rearrangement of the host cytoskeletal network induced by Mimivirus and Marseillevirus upon infection. We show that while both Mimivirus and Marseillevirus infections of A. castellanii cells cause retraction of acanthopodia and depolymerization of the host actin filament network, the Mimivirus infection also results in characteristic cleavage of the host tubulin, a phenomenon not previously reported with any intracellular pathogens. Furthermore, we show that the amoebal tubulin cleavage during Mimivirus infection is a post-replicative event. Because time-lapse microscopy showed that Mimivirus infection leads to the bursting of cells, releasing the virus, we hypothesize that tubulin cleavage together with actin depolymerization during the later stages of Mimivirus assembly is essential for cell lysis due to apoptotic/necrotic cell death. We also characterize the Mimivirus-encoded gp560, a Zn metalloprotease, however, the purified gp560 protein was unable to cleave the commercially available porcine brain tubulin. While protein synthesis is essential for causing the morphological changes in the case of Mimivirus, the proteins which are packaged in the viral capsid along with the genome are sufficient to induce CPE in the case of Marseillevirus. IMPORTANCE In general, intracellular pathogens target the cytoskeletal network to enable their life cycle inside the host. Pathogen-induced changes in the host cell morphology usually accompany global changes in the cytoskeleton resulting in cytopathic effects. While viruses have been shown to use the host actin cytoskeleton for entry and transport during early infection, the role of microtubules in the viral life cycle is only beginning to emerge. Here, we show that the giant viruses Mimivirus and Marseillevirus both induce depolymerization of the actin filament, Mimivirus also causes a characteristic cleavage of tubulin not previously reported for any intracellular pathogen. Because tubulin cleavage occurs late during infection, we hypothesize that tubulin cleavage aids in cell death and lysis rather than establishing infection. The different strategies used by viruses with similar host niches may help them survive in competition.


Assuntos
Acanthamoeba castellanii , Amoeba , Vírus Gigantes , Mimiviridae , Animais , Suínos , Mimiviridae/genética , Tubulina (Proteína)/metabolismo
8.
Sci Rep ; 12(1): 16806, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207453

RESUMO

Humans and Acanthamoeba polyphaga mimivirus share numerous homologous genes, including collagens and collagen-modifying enzymes. To explore this homology, we performed a genome-wide comparison between human and mimivirus using DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) and identified 52 new putative mimiviral proteins that are homologous with human proteins. To gain functional insights into mimiviral proteins, their human protein homologs were organized into Gene Ontology (GO) and REACTOME pathways to build a functional network. Collagen and collagen-modifying enzymes form the largest subnetwork with most nodes. Further analysis of this subnetwork identified a putative collagen glycosyltransferase R699. Protein expression test suggested that R699 is highly expressed in Escherichia coli, unlike the human collagen-modifying enzymes. Enzymatic activity assay and mass spectrometric analyses showed that R699 catalyzes the glucosylation of galactosylhydroxylysine to glucosylgalactosylhydroxylysine on collagen using uridine diphosphate glucose (UDP-glucose) but no other UDP-sugars as a sugar donor, suggesting R699 is a mimiviral collagen galactosylhydroxylysyl glucosyltransferase (GGT). To facilitate further analysis of human and mimiviral homologous proteins, we presented an interactive and searchable genome-wide comparison website for quickly browsing human and Acanthamoeba polyphaga mimivirus homologs, which is available at RRID Resource ID: SCR_022140 or https://guolab.shinyapps.io/app-mimivirus-publication/ .


Assuntos
Acanthamoeba , Mimiviridae , Acanthamoeba/genética , Acanthamoeba/metabolismo , Colágeno/metabolismo , Genômica , Glucose/metabolismo , Glucosiltransferases , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Mimiviridae/genética , Açúcares/metabolismo , Uridina Difosfato Glucose/metabolismo , Proteínas Virais/genética
9.
Proc Natl Acad Sci U S A ; 119(36): e2205856119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037367

RESUMO

Protists are important regulators of microbial communities and key components in food webs with impact on nutrient cycling and ecosystem functioning. In turn, their activity is shaped by diverse intracellular parasites, including bacterial symbionts and viruses. Yet, bacteria-virus interactions within protists are poorly understood. Here, we studied the role of bacterial symbionts of free-living amoebae in the establishment of infections with nucleocytoplasmic large DNA viruses (Nucleocytoviricota). To investigate these interactions in a system that would also be relevant in nature, we first isolated and characterized a giant virus (Viennavirus, family Marseilleviridae) and a sympatric potential Acanthamoeba host infected with bacterial symbionts. Subsequently, coinfection experiments were carried out, using the fresh environmental isolates as well as additional amoeba laboratory strains. Employing fluorescence in situ hybridization and qPCR, we show that the bacterial symbiont, identified as Parachlamydia acanthamoebae, represses the replication of the sympatric Viennavirus in both recent environmental isolates as well as Acanthamoeba laboratory strains. In the presence of the symbiont, virions are still taken up, but viral factory maturation is inhibited, leading to survival of the amoeba host. The symbiont also suppressed the replication of the more complex Acanthamoeba polyphaga mimivirus and Tupanvirus deep ocean (Mimiviridae). Our work provides an example of an intracellular bacterial symbiont protecting a protist host against virus infections. The impact of virus-symbiont interactions on microbial population dynamics and eventually ecosystem processes requires further attention.


Assuntos
Amoeba , Vírus Gigantes , Mimiviridae , Simbiose , Amoeba/microbiologia , Amoeba/virologia , Ecossistema , Vírus Gigantes/genética , Hibridização in Situ Fluorescente , Mimiviridae/genética
10.
Elife ; 112022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35900198

RESUMO

Mimivirus is the prototype of the Mimiviridae family of giant dsDNA viruses. Little is known about the organization of the 1.2 Mb genome inside the membrane-limited nucleoid filling the ~0.5 µm icosahedral capsids. Cryo-electron microscopy, cryo-electron tomography, and proteomics revealed that it is encased into a ~30-nm diameter helical protein shell surprisingly composed of two GMC-type oxidoreductases, which also form the glycosylated fibrils decorating the capsid. The genome is arranged in 5- or 6-start left-handed super-helices, with each DNA-strand lining the central channel. This luminal channel of the nucleoprotein fiber is wide enough to accommodate oxidative stress proteins and RNA polymerase subunits identified by proteomics. Such elegant supramolecular organization would represent a remarkable evolutionary strategy for packaging and protecting the genome, in a state ready for immediate transcription upon unwinding in the host cytoplasm. The parsimonious use of the same protein in two unrelated substructures of the virion is unexpected for a giant virus with thousand genes at its disposal.


Assuntos
Vírus Gigantes , Mimiviridae , Capsídeo/metabolismo , Microscopia Crioeletrônica/métodos , Genoma Viral , Vírus Gigantes/genética , Mimiviridae/genética , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Oxirredutases/metabolismo
11.
J Virol ; 96(14): e0081322, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35762756

RESUMO

FNIP repeat domain-containing protein (FNIP protein) is a little-studied atypical leucine-rich repeat domain-containing protein found in social amoebae and mimiviruses. Here, a recently reported mimivirus of lineage C, Megavirus baoshan, was analyzed for FNIP protein genes. A total of 82 FNIP protein genes were identified, each containing up to 26 copies of the FNIP repeat, and mostly having an F-box domain at the N terminus. Both nucleotide and amino acid sequences of FNIP repeat were highly conserved. Most of the FNIP protein genes clustered together tandemly in groups of two to 14 genes. Nearly all FNIP protein genes shared similar expression patterns and were expressed 4 to 9 h postinfection. A typical viral FNIP protein, Mb0983, was selected for functional analysis. Protein interactome analysis identified two small GTPases, Rap1B and Rab7A, that interacted with Mb0983 in cytoplasm. The overexpression of Mb0983 in Acanthamoeba castellanii accelerated the degradation of Rap1B and Rab7A during viral infection. Mb0983 also interacted with host SKP1 and cullin-1, which were conserved components of the SKP1-cullin-1-F-box protein (SCF)-type ubiquitin E3 ligase complex. Deletion of the F-box domain of Mb0983 not only abolished its interaction with SKP1 and cullin-1 but also returned the speed of Rap1B and Rab7A degradation to normal in infected A. castellanii. These results suggested that Mb0983 is a part of the SCF-type ubiquitin E3 ligase complex and plays a role in the degradation of Rap1B and Rab7A. They also implied that other viral F-box-containing FNIP proteins might have similar effects on various host proteins. IMPORTANCE Megavirus baoshan encodes 82 FNIP proteins, more than any other reported mimiviruses. Their genetic and transcriptional features suggest that they are important for virus infection and adaption. Since most mimiviral FNIP proteins have the F-box domain, they were predicted to be involved in protein ubiquitylation. FNIP protein Mb0983 interacted with host SKP1 and cullin-1 through the F-box domain, supporting the idea that it is a part of the SCF-type ubiquitin E3 ligase complex. The substrates of Mb0983 for degradation were identified as the host small GTPases Rap1B and Rab7A. Combining the facts of the presence of a large number of FNIP genes in megavirus genomes, the extremely high expression level of the viral ubiquitin gene, and the reported observation that 35% of megavirus-infected amoeba cells died without productive infection, it is likely that megavirus actively explores the host ubiquitin-proteasome pathway in infection and that viral FNIP proteins play roles in the process.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas Virais , Acanthamoeba castellanii/virologia , Proteínas F-Box/metabolismo , Interações entre Hospedeiro e Microrganismos , Mimiviridae/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
12.
PeerJ ; 10: e13544, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35729905

RESUMO

Background: The characterization and comparison of microbial sequences, including archaea, bacteria, viruses and fungi, are very important to understand their evolutionary origin and the population relationship. Most methods are limited by the sequence length and lack of generality. The purpose of this study is to propose a general characterization method, and to study the classification and phylogeny of the existing datasets. Methods: We present a new alignment-free method to represent and compare biological sequences. By adding the covariance between each two nucleotides, the new 18-dimensional natural vector successfully describes 24,250 genomic sequences and 95,542 DNA barcode sequences. The new numerical representation is used to study the classification and phylogenetic relationship of microbial sequences. Results: First, the classification results validate that the six-dimensional covariance vector is necessary to characterize sequences. Then, the 18-dimensional natural vector is further used to conduct the similarity relationship between giant virus and archaea, bacteria, other viruses. The nearest distance calculation results reflect that the giant viruses are closer to bacteria in distribution of four nucleotides. The phylogenetic relationships of the three representative families, Mimiviridae, Pandoraviridae and Marsellieviridae from giant viruses are analyzed. The trees show that ten sequences of Mimiviridae are clustered with Pandoraviridae, and Mimiviridae is closer to the root of the tree than Marsellieviridae. The new developed alignment-free method can be computed very fast, which provides an effective numerical representation for the sequence of microorganisms.


Assuntos
Mimiviridae , Vírus , Humanos , Filogenia , Genoma , Evolução Biológica , Nucleotídeos/genética , Genômica , Bactérias/genética , Archaea/genética , Mimiviridae/genética
13.
Mol Med Rep ; 25(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35506451

RESUMO

The Mimivirus is a giant virus that infects amoebae and was long considered to be a bacterium due to its size. The viral particles are composed of a protein capsid of ~500 nm in diameter, which is enclosed in a polysaccharide layer in which ~120­140 nm long fibers are embedded, resulting in an overall diameter of 700 nm. The virus has a genome size of 1.2 Mb DNA, and surprisingly, replicates only in the cytoplasm of the infected cells without entering the nucleus, which is a unique characteristic among DNA viruses. Their existence is undeniable; however, as with any novel discovery, there is still uncertainty concerning their pathogenicity mechanisms in humans and the nature of the Mimivirus virophage resistance element system (MIMIVIRE), a term given to describe the immune network of the Mimivirus, which closely resembles the CRISPR­Cas system. The scope of the present review is to discuss the recent developments derived from structural and functional studies performed on the distinctive characteristics of the Mimivirus, and from studies concerning their putative clinical relevance in humans.


Assuntos
Amoeba , Vírus Gigantes , Mimiviridae , Sistemas CRISPR-Cas , Capsídeo , Vírus Gigantes/genética , Humanos , Mimiviridae/genética
14.
Sci Rep ; 12(1): 8676, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606506

RESUMO

Acanthamoeba polyphaga mimivirus (APMV), a species of amoeba-infecting giant viruses, has recently emerged as human respiratory pathogens. This study aimed to evaluate the presence of Mimivirus in respiratory samples, collected from tuberculosis (TB)-suspected patients. The study was performed on 10,166 clinical respiratory samples from April 2013 to December 2017. Mimivirus was detected using a suicide nested-polymerase chain reaction (PCR) and real-time PCR methods. Of 10,166 TB-suspected patients, 4 (0.04%) were positive for Mimivirus, including Mimivirus-53, Mimivirus-186, Mimivirus-1291, and Mimivirus-1922. Three out of four patients, hospitalized in the intensive care unit (ICU), were mechanically ventilated. All patients had an underlying disease, and the virus was detected in both sputum and bronchoalveolar lavage samples. In conclusion, Mimivirus was isolated from TB-suspected patients in a comprehensive study. The present results, similar to previous reports, showed that Mimiviruses could be related to pneumonia. Further studies in different parts of the world are needed to additional investigate the clinical importance of Mimivirus infection.


Assuntos
Amoeba , Vírus Gigantes , Mimiviridae , Tuberculose , Vírus de DNA , Humanos , Mimiviridae/genética , Tuberculose/diagnóstico
15.
J Virol ; 96(7): e0211421, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35262372

RESUMO

Virophages are a group of small double-stranded DNA viruses that infect protist hosts and parasitize the viral factory of host giant/large viruses to propagate. Here, we discover a novel cell-virus-virophage (CVv) tripartite interaction system by using unicellular micro-green algae (Chlorella sp.) as eukaryotic hosts for the first time. Viral particles, resembling known virophages and large alga viruses, are detected in culture supernatants and inside algal cells. Complete genomic sequences of the virophage (Chlorella virus virophage SW01 [CVv-SW01]; 24,744 bp) and large virus (Chlorella virus XW01 [CV-XW01]; 407,612 bp) are obtained from the cocultures. Both genomic and phylogenetic analyses show that CVv-SW01 is closely related to virophages previously found in Dishui Lake. CV-XW01 shares the greatest number of homologous genes (n = 82) with Cafeteria roenbergensis virus (CroV) and phylogenetically represents the closest relative to CroV. This is the first report of a large green alga virus being affiliated with a heterotrophic zooplankton-infecting Cafeteriavirus of the family Mimiviridae. Moreover, the codon usage preferences of CV-XW01 and CVv-SW01 are highly similar to those of CroV and its virophage Mavirus, respectively. The discovery of such a novel CVv system with the green alga Chlorella sp. as the single cellular eukaryotic host paves a way to further investigate the potential interaction mechanism of CVv and its significance in the ecology of green algae and the evolution of large/giant viruses and their parasitic viruses. IMPORTANCE Parasitic virophages are small unicellular eukaryotic dsDNA viruses that rely on the viral factories of coinfecting giant/large dsDNA viruses for propagation. Presently, the identified eukaryotic hosts of isolated virophages were restricted to a free-living amoeba, Acanthamoeba polyphaga, and a widespread marine heterotrophic flagellate, Cafeteria roenbergensis. In this study, we successfully discovered and identified a novel tripartite interaction system comprised of a micro-green alga (Chlorella sp.), Mimiviridae large green alga virus, and virophage at the coculture level, with Chlorella sp. as the eukaryotic host, based on combination analysis of infection, morphotype, genome, and phylogeny. The large green alga virus CV-XW01 represents the closest relative to the Mimiviridae giant virus Cafeteria roenbergensis virus, host virus of the virophage Mavirus, as well as a novel large virus of Mimiviridae that infects a non-protozoan protist host. The virophage CVv-SW01 highly resembles Mavirus in its codon usage frequency and preference, although they are phylogenetically distantly related. These findings give novel insights into the diversity of large/giant viruses and their virophages.


Assuntos
Mimiviridae , Phycodnaviridae , Virófagos , Chlorella/virologia , Vírus de DNA/genética , Genoma Viral , Vírus Gigantes/genética , Mimiviridae/genética , Mimiviridae/isolamento & purificação , Phycodnaviridae/genética , Phycodnaviridae/isolamento & purificação , Filogenia , Virófagos/genética , Virófagos/isolamento & purificação
16.
Viruses ; 14(2)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215800

RESUMO

Mimiviruses are giant viruses of amoeba that can be found in association with virophages. These satellite-like viruses are dependent on the mimivirus viral factory to replicate. Mimiviruses can also be associated with linear DNA molecules called transpovirons. Transpovirons and virophages are important drivers of giant virus evolution although they are still poorly studied elements. Here, we describe the isolation and genomic characterization of a mimivirus/virophage/transpoviron tripartite system from Brazil. We analyzed transmission electron microscopy images and performed genome sequencing and assembly, gene annotation, and phylogenetic analysis. Our data confirm the isolation of a lineage A mimivirus (1.2 Mb/1012 ORFs), called mimivirus argentum, and a sputnik virophage (18,880 bp/20 ORFs). We also detected a third sequence corresponding to a transpoviron from clade A (6365 bp/6 ORFs) that presents small terminal inverted repeats (77 nt). The main genomic features of mimivirus argentum and of its virophage/transpoviron elements corroborates with what is described for other known elements. This highlights that this triple genomic and biological interaction may be ancient and well-conserved. The results expand the basic knowledge about unique and little-known elements and pave the way to future studies that might contribute to a better understanding of this tripartite relationship.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Vírus Gigantes/genética , Mimiviridae/genética , Virófagos/genética , Brasil , Genoma Viral , Genômica , Vírus Gigantes/classificação , Mimiviridae/classificação , Fases de Leitura Aberta , Filogenia , Proteínas Virais/genética , Virófagos/classificação
17.
J Mol Biol ; 434(2): 167334, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34757057

RESUMO

Base excision DNA repair (BER) is necessary for removal of damaged nucleobases from the genome and their replacement with normal nucleobases. BER is initiated by DNA glycosylases, the enzymes that cleave the N-glycosidic bonds of damaged deoxynucleotides. Human endonuclease VIII-like protein 2 (hNEIL2), belonging to the helix-two-turn-helix structural superfamily of DNA glycosylases, is an enzyme uniquely specific for oxidized pyrimidines in non-canonical DNA substrates such as bubbles and loops. The structure of hNEIL2 has not been solved; its closest homologs with known structures are NEIL2 from opossum and from giant mimivirus. Here we analyze the conformational dynamics of free hNEIL2 using a combination of hydrogen/deuterium exchange mass spectrometry, homology modeling and molecular dynamics simulations. We show that a prominent feature of vertebrate NEIL2 - a large insert in its N-terminal domain absent from other DNA glycosylases - is unstructured in solution. It was suggested that helix-two-turn-helix DNA glycosylases undergo open-close transition upon DNA binding, with the large movement of their N- and C-terminal domains, but the open conformation has been elusive to capture. Our data point to the open conformation as favorable for free hNEIL2 in solution. Overall, our results are consistent with the view of hNEIL2 as a conformationally flexible protein, which may be due to its participation in the repair of non-canonical DNA structures and/or to the involvement in functional and regulatory protein-protein interactions.


Assuntos
DNA Glicosilases/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Deutério , Hidrogênio , DNA , Dano ao DNA , DNA Glicosilases/genética , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Proteínas de Ligação a DNA , Desoxirribonuclease (Dímero de Pirimidina)/química , Desoxirribonuclease (Dímero de Pirimidina)/genética , Humanos , Espectrometria de Massas , Mimiviridae/genética , Modelos Moleculares , Conformação Proteica
18.
ISME J ; 16(3): 695-704, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34556816

RESUMO

The discovery of Acanthamoeba polyphaga Mimivirus, the first isolated giant virus of amoeba, challenged the historical hallmarks defining a virus. Giant virion sizes are known to reach up to 2.3 µm, making them visible by optical microscopy. Their large genome sizes of up to 2.5 Mb can encode proteins involved in the translation apparatus. We have investigated possible energy production in Pandoravirus massiliensis. Mitochondrial membrane markers allowed for the detection of a membrane potential in purified virions and this was enhanced by a regulator of the tricarboxylic acid cycle but abolished by the use of a depolarizing agent. Bioinformatics was employed to identify enzymes involved in virion proton gradient generation and this approach revealed that eight putative P. massiliensis proteins exhibited low sequence identities with known cellular enzymes involved in the universal tricarboxylic acid cycle. Further, all eight viral genes were transcribed during replication. The product of one of these genes, ORF132, was cloned and expressed in Escherichia coli, and shown to function as an isocitrate dehydrogenase, a key enzyme of the tricarboxylic acid cycle. Our findings show for the first time that a membrane potential can exist in Pandoraviruses, and this may be related to tricarboxylic acid cycle. The presence of a proton gradient in P. massiliensis makes this virus a form of life for which it is legitimate to ask the question "what is a virus?".


Assuntos
Mimiviridae , Prótons , Ciclo do Ácido Cítrico , Vírus de DNA/genética , Genoma Viral , Mimiviridae/genética
19.
Viruses ; 13(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34452361

RESUMO

Recently, Poland has become a leading producer of sturgeon meat and caviar in Europe and is one of the largest in the world. The growing importance of this branch of aquaculture means that diseases of these fish, especially viral ones, are becoming the object of interest for ichthyopathologists. In recent years, there have been increasing reports of health problems in the dynamically developing sturgeon farming. The greatest risk appears to be emerging infectious diseases that are caused by viruses and that can become a serious threat to the development of the aquaculture industry and the success of sturgeon restitution programs undertaken in many European countries, including Poland. In this paper, an attempt was made to determine the spread of the two most important groups of viruses in Polish sturgeon farming: These include the herpesviruses and sturgeon nucleocytoplasmic large DNA viruses (sNCLDV), in particular, mimiviruses. In the years 2016-2020, 136 samples from nine farms were collected and tested by using the WSSK-1 cell line, PCR and Real Time PCR methods. All results were negative for herpesviruses. Out of the samples, 26% of the samples have been tested positive for mimiviruses. Sanger sequencing of mimiviruses demonstrated their affiliation with AciV-E. The sequence characterization confirmed the presence of both V1 and V2 lineages in Polish fish facilities, but variant V2 seems to be more widespread, as is observed in other European countries.


Assuntos
Aquicultura , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Peixes/virologia , Infecções por Herpesviridae/veterinária , Herpesviridae/genética , Mimiviridae/genética , Animais , Proteínas do Capsídeo/genética , Peixes/classificação , Herpesviridae/classificação , Herpesviridae/isolamento & purificação , Mimiviridae/classificação , Mimiviridae/isolamento & purificação , Filogenia , Polônia
20.
Microbiol Spectr ; 9(1): e0036821, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34431709

RESUMO

Most virus-infected cells show morphological and behavioral changes, which are called cytopathic effects. Acanthamoeba castellanii, an abundant, free-living protozoan, serves as a laboratory host for some viruses of the phylum Nucleocytoviricota-the giant viruses. Many of these viruses cause cell rounding in the later stages of infection in the host cells. Here, we show the changes that lead to cell rounding in the host cells through time-lapse microscopy and image analysis. Time-lapse movies of A. castellanii cells infected with Mimivirus shirakomae, kyotovirus, medusavirus, or Pandoravirus japonicus were generated using a phase-contrast microscope. We updated our phase-contrast-based kinetic analysis algorithm for amoebae (PKA3) and used it to analyze these time-lapse movies. Image analysis revealed that the process leading to cell rounding varies among the giant viruses; for example, M. shirakomae infection did not cause changes for some time after the infection, kyotovirus infection caused an early decrease in the number of cells with typical morphologies, and medusavirus and P. japonicus infection frequently led to the formation of intercellular bridges and rotational behavior of host cells. These results suggest that in the case of giant viruses, the putative reactions of host cells against infection and the putative strategies of virus spread are diverse. IMPORTANCE Quantitative analysis of the infection process is important for a better understanding of viral infection strategies and virus-host interactions. Here, an image analysis of the phase-contrast time-lapse movies displayed quantitative differences in the process of cytopathic effects due to the four giant viruses in Acanthamoeba castellanii, which were previously unclear. It was revealed that medusavirus and Pandoravirus japonicus infection led to the formation of a significant number of elongated particles related to intercellular bridges, emphasizing the importance of research on the interaction of viruses with host cell nuclear function. Mimivirus shirakomae infection did not cause any changes in the host cells initially, so it is thought that the infected cells can actively move and spread over a wider area, emphasizing the importance of observation in a wider area and analysis of infection efficiency. These results suggest that a kinetic analysis using the phase-contrast-based kinetic analysis algorithm for amoebae (PKA3) reveals the infection strategies of each giant virus.


Assuntos
Acanthamoeba castellanii/virologia , Vírus Gigantes/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Acanthamoeba castellanii/genética , Vírus de DNA , Genoma Viral , Vírus Gigantes/classificação , Vírus Gigantes/genética , Cinética , Mimiviridae/genética , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...